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Areal aggregation over discrete zones, or piecewise polygonal representations, 

is a common problem in geographical analysis. Various solutions to the problem 

have been proposed, but in many cases their accuracy assessment is judged on 

arbitrary cases and no systematic evaluation of potential process errors. This 

research note analyses errors based upon patterns in the data, specifically using 

entropy to measure spatial segregation of mapped attributes. A general result is 

found that the mean relative error increases as interpolated areas have greater 

heterogeneity. This result was tested with synthetic data and actual census data. 

We also describe an implementation of piecewise areal aggregation using the 

EM algorithm in GIS. 

 

 

1. Introduction 

 

A common need in working with socio-economic information is transferring data between 

incompatible spatial units. It arises from data being reported for a set of collection zones but 

applications need the data for different spatial units. For instance a census collection zone has 

household counts for urban regions, but it is desired to know the break down of this variable for 

traffic analysis zones. The problem of transferring data between incompatible systems is known 

as areal interpolation (Lam, 1983). The set of spatial units with known variables is termed the 

source zone, and the other set of superimposed spatial units with unknown variables is termed 

the target zone. Transferring data is made possible by determining the area density for target 

zones, for example the number of households per hectare. Goodchild et al. (1993) describes a 

framework based upon the assumptions made in the areal interpolation process. One assumption 

is the pycnophylactic property which stipulates that the data value for source zones equals the 

sum of the constituent target areas multiplied by their estimated densities. The term was 

proposed by Tobler (1979) who also stipulated other conditions on the smoothness properties 

between zonal boundaries to model gradients of change for continuous surface representations. 

The main interest in this research note is to apply a piecewise approximation on the areal 

densities for source and target zones. Area weighted proportioning, a procedure commonly found 

in GIS, is one form of piecewise areal interpolation that assumes homogeneous density for 

source zones. For many problems dealing with socio-economic information this is an invalid 

assumption, and leads to the commonly described modifiable area unit problem (Openshaw and 

Taylor, 1981). Assuming variability in areal density for source zones; there are two assumptions 

that may be made on areal density for target zones. Both options make use of ancillary 

information for target zones. In the first option we have knowledge of the distribution of areal 



densities for map classes. Dasymetric mapping uses this assumption where area density is 

distributed between binary classes with zero density and the remainder assigned according to a 

value class by area weighted proportioning. This may be further generalized to assign the 

variable according to predefined ratios between the classes (Mennis, 2003). A second option we 

believe is more common practice; the ancillary information uses a set of ancillary zones with 

constant area densities. These superimposed zones in combination with the source zones with 

known values define a set of conditioned equations that may be solved by various methods. The 

set of zones with ancillary information are referred to as control zones, and once their areal 

density is solved they may be trivially combined to compute values for any arbitrary set of target 

zones. See figure 1. We pursue this approach as it is very flexible (Goodchild et al., 1993) and 

may be applied to a large class of applications where controls zones are given by land use classes 

obtained from remote sensing classification.  
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Figure 1. Source zones, control (target) zones and intersected sub-zones. 

 

The choice of an areal interpolation technique should be guided by the assumptions underlying 

the approach and its accuracy. A number of studies have compared the results of areal 

interpolation to assess errors. The difficulty is that the error analysis only reports the consistency 

with which a procedure derives a result. Only in a few cases are independent geographical data 

available to assess the actual error in deriving areal density estimates for target zones. Although 

this provides just a single comparison, it is still a good reality check. More systematic 

approaches for error analysis require survey sampling or simulating zonal systems. Fisher and 

Langsford (1995) investigate the error distribution by randomly aggregating a set of elemental 

zones with known population to hypothetical zones. Other researchers have similarly generated 

synthetic zones for error analysis purposes (Gregory and Ell, 2005). These studies demonstrate 

that approaches which enforce the pycnophylactic property and make use of ancillary 

information give the most accurate results. Fisher and Langsford (1995) also make the 

observation that accuracy decreases as the number of target zones increase. Sadahiro (2000) 

investigated how the relative size of source zones to target zones affect errors; concluding that a 



more accurate result is obtained if source zones are small, and hence are more likely to be nested 

in target zones. In this research note we explore a further characteristic for the spatial 

configuration of target zones superimposed on source zones. This follows from there being zero 

error when the source and target zones are equivalent, and error potentially increases for highly 

segregated spatial configurations. A statistic that may be used to measure the degree of 

segregation in maps is entropy. Entropy is used as a measure of the spatial distribution of 

mapped attributes in geostatistics (Journel and Deutsch, 1993) and in landscape ecology to 

indicate diversity (Forman, 1995). Can entropy provide additional insight into error analysis for 

areal interpolation? 

 

The aim of this research note is to explore to what extent entropy characterizes errors. The next 

section describes the method of areal interpolation we used based upon Flowerdew and Green 

(1991), and its implementation as a geoprocessing tool in GIS. We then describe a systematic 

means of defining spatial configurations of source and target zones to assess error against a 

measure of spatial entropy. We compare errors from the EM algorithm and simple area weighted 

proportioning to show that as entropy increases so does potential error. A further example is 

given to disaggregate household data between to a zoning scheme with known data to provide a 

single comparison to a real world situation.  

 

2. GIS Implementation of piecewise areal interpolation 

 

The method used for areal interpolation was proposed by Flowerdew and Green (1991). The 

method uses the expectation-maximization (EM) algorithm (Dempster et al., 1977) which is an 

iterative method to estimate unknown parameters for the density given the data count we know 

for source zones. We choose this method as it is accurate and finds the best possible solution that 

satisfies the pycnophylactic property. In figure 1 we are given a set of source zones with counts 

ys, and the goal is to obtain disaggregate values yst for the intersected target zones given there are 

constant but unknown densities λc for these target zones. Referring to figure 1, a piecewise areal 

interpolation for an area is estimated as: 

 

 sccsc ay λ=  (1) 

 

where ysc is the data count (to be estimated) for the sub-zone given by source s and given control 

class c, λc is the area density for the target zones, and asc is the area of the sub-zone. 

 

The pycnophylactic property enforces the condition that sub-zones belonging to a source zone 

sum to the given total count: 
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where ys is the known data count for zone s over all constituent classes c. Combining equations 

(1) and (2) we apply estimates for λc to derive expected values for ysc as: 
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This is the expectation of the missing data (E step) in the EM algorithm (Dempster et al., 1977). 

The maximisation of likelihood over the complete data (M step) for updated values of the area 

density for each land class λc is given as: 
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The EM algorithm iterates these steps in equations (3) and (4) until there are insignificant 

changes in estimated λc. Further details of the algorithm may be found in Flowerdew and Green 

(1991, 1994). A feature of the EM algorithm is that it finds the maximum likelihood estimates 

(Pickles, 1985) for the density parameters. We can think of the density estimates as having a 

distribution, and the aim is to identify the distribution parameters that most likely generated the 

data. Flowerdew and Green (1991, 1994) suggest a Poisson distribution with λc as the rate 

parameter, and ys as a random variable that takes discrete values over the source areas. The 

Poisson distribution for a random variable y as a count per unit area is: 
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In this problem the given data are source zones and the probability needs to be calculated over 

these areas. For each source zone the Poison distribution for a random variable ys and constituent 

the rate parameters λc where c=1..k is: 
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The likelihood of the data given different estimates for the density parameters is directly 

proportional to the probability in equation (6), so the likelihood may also be expressed as L{ys | 

λc}. The likelihood of the set of n independent source counts is the product of the likelihoods of 

the individual sources, namely: 
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Values for likelihoods may be very small, given that the denominator ys! in equation (6) may be 

very large, so the usual approach for computing equation (6) is as a logarithm of the likelihoods, 

called the log-likelihood. Figure 2 illustrates log-likelihood values for one density estimate from 

the initial estimate to the maximum-likelihood estimate.  
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Figure 2. The maximum likelihood estimate for one density value. Note that the y-axis uses 

negative log-likelihhod so it appears as a minimum. 

 

The method is implemented as a software tool within GIS. The interface for the tool requires a 

geospatial layer for the source zones with attributes for the zone identifier (subscript s in 

equation (2)) and known data value (ys in equation (2)). A second geospatial layer is needed for 

the integrated source and control zones with attributes for their identifiers (subscript sc in 

equation (3)) and data value field to store the result data value (ysc in equation (3)). This 

integrated layer may be computed in a GIS by a geometrical union of the source and land class 

zones. The union operation needs to produce unique source-zone areas (that may or may not be 

contiguous areas) and not to simplify the output polygons. This is because the index in equation 

(1) refers to a zone represented by a multi-part polygon composed of all areas that belong to 

source zone s and the land class zone c. It is also important to have an exact sequence in 

numbering source and control zone identifiers; this information is used in the GIS to properly 

associate features for source and control zones. The maximum log-likelihood value is displayed  

at each iteration during execution to provide feedback on the how the EM algorithm converges. 

It is difficult for a user to know what value to set for the convergence tolerance; therefore we 

allow the user to specify the number of iteration steps performed. By inspecting the output it is 

easy to gauge how convergence is progressing. 

 

A tool for the EM algorithm to perform piecewise areal interpolation is available1 from the 

author. The tool is implemented in ArcGIS with a dialogue interface following the description 

given above. The next section evaluates the error for piecewise areal interpolation. 

                                                 
1
 The tool may be downloaded from http://www.gpa.uq.edu.au/CRSSIS/tools/ludm/ (Lasted accessed Feb. 2007) 

with instructions and an example. 



 

3. Error analysis 
 

In this section we analyse the distribution of errors for different spatial configurations. By 

creating synthetic data we aim to find a general result. A method for characterizing the 

heterogeneity of spatial configurations and summarizing errors is discussed. A set of simple 

cases are created to explore errors.  

 

We propose using spatial entropy as a measure of the spatial distribution of mapped attributes 

(Journel and Deutsch, 1993). Entropy is the measure of the disorder or randomness in a system. 

Shannon’s diversity index is widely used to measure entropy for probabilistic and non-

probabilistic distributions in spatial analysis (Shannon and Weaver 1949). Using the same 

notation for zones, Shannon’s diversity index I has the form: 
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where psc is interpreted as the probability or area proportion of a discrete class for source zone s. 

Is is a maximum when all classes occur as equal proportions within a source zone, i.e. pc = Asc ⁄ 

As ∀c, and it is zero when a single class occupies a source zone, i.e. pc = 1. An aggregate value 

for entropy is given as the average for Is for all source zones, denoted as Ī.  

 

An error term is given by the difference between the known data value for integrated sub-zones 

and the estimated value from equation (3). To allow comparison among cases with differing data 

values it was decided to report error as the ratio of the absolute error divided by the true data 

value. This is the mean relative error (MRE) given as:  
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A series of simple cases were created for three source zones and three land classes. Spatial 

configurations varied from the case where source and control zones matched exactly, to source 

and control zones crossed each other. See figure 2. The motivation to create these synthetic cases 

is that Shannon’s diversity index will vary from zero to a maximum for these extremes, and the 

error term will also vary from zero to a potentially high value for uniformly overlapping classes, 

i.e. each source zone contains the same proportion of land classes and there is no way to infer 

their areal density.  
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Figure 2. Error in estimating area density and spatial entropy for exactly overlapping (lower left) 

to for highly segregated spatial configurations (top right). 

 

 

The results of analyzing a number of spatial configurations for three source zones and three 

control zones are shown in figure 3. The EM Algorithm clearly gives a more accurate result over 

the area weighted proportioning method for areal interpolation. Shannon’s Diversity Index is a 

maximum when each land class occurs with equal proportions in each source zone; in which case 

the EM algorithm reduces to the same accuracy as area weighted proportioning. Shannon’s 

Diversity Index does provide a reasonable predictor of expected errors but it is irregular. This is 

because the entropy measure is treated as additive, that is it is computed by averaging over all 

source zones, which violates the assumption that the sources of uncertainty are independent 

(Shannon and Weaver, 1949). This is the situation with the EM algorithm where you may have 

one control zone completely overlaping a source zone which provides a good partial solution to 

resolve areal density for that control class. It shows up in Figure 3 as cases with low MRE below 

the trend line. This is consistent with conclusions by Sadahiro (2000) with regard to the relative 

size of source zones to control zones affecting errors. In summary, we believe that entropy 

provides a good qualitative indicator of expected errors which is biased towards the worst case 

performance  

 



 
 

Figure 3. Root mean square error (RMSE) plotted against Shannon’s Diversity Index Each point 

in the plot is a synthetic data case used to assess areal interpolation. Dark line shows error term 

for EM Algorithm, dashed line shows error term for Area Weighted Proportioning. The gray bar 

shows confidence limits for fitted linear trend line (r
2
=0.78) for EM Algorithm. 

 

4. Example 

 

As a final test we apply this to a real problem. The Australian Bureau of Statistics (ABS) 

provides census data for statistical collection zones and urban areas. These are derived from 

aggregated household surveys which are reported for various zoning systems. We test a single 

case of error for population within the region around Brisbane (approximately 23,000 km
2
 

supporting a population of 2.5 million people) using 2001 census data. Source zones (298 in 

total) were obtained for statistical collection areas and the control zones for areas classed as high 

density urban, low density urban, and non-urban. A map of these zones is shown in Figure 4. The 

configuration of zones gives an average Shannon’s Diversity Index of 0.75. Based upon the 

relationship in Figure 3 we expect the mean relative error (MRE) to vary between 0.1 – 0.4. In 

comparison the 2001 census data computes it is as 0.84. Although this error is outside the 

confidence limits for the simple cases it does incorporate variability in dealing with real data and 

is still within the same order of magnitude that was inferred. Therefore, it at least confirms that 

entropy can be used as a qualitative indicator of expected errors. It is concluded that the 

relationship between an entropy measure and error does provide useful insights. 
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Non-Urban 120,817 218,543 44.7% 
Low Urban 78,567 64,174 22.4% 
High Urban 2,278,021 2,194,689 3.8% 

 
 

Figure 4. Census zones overlaid on control zones. The table shows estimated populations from 

the EM algorithm using the ABS census population data and the three land classes as control 

zones. ABS also reports population for these control zones providing a true actual comparison.  

 

 

5. Conclusion 

 

Areal aggregation is a common problem in geographical analysis. The EM algorithm is relatively 

accurate and enforces the pycnophylactic condition. The approach infers areal density from the 

internal structure of patterns formed between known data values for source zones and a set of 

intersected control zones with regular, but unknown areal densities. The procedure is able to 

check the internal consistency of a result but not the statistical variation due to observation or 

process errors. This research note explores if process errors can be analysed based upon patterns 

in the data, specifically using entropy to measure spatial segregation of mapped attributes. A 

general result is found that the mean relative error increases as source zones show greater 

diversity in land classes. This was tested with synthetic data and actual census data. It gives a 

qualitative means to judge expected error terms based upon the spatial configuration of source 

and control zones. The research note also describes a way to implement piecewise areal 

aggregation using the EM algorithm in GIS. A software tool is available from the Internet site 

given with the author’s details for ArcGIS, and implementation on other systems is planned for 

in the near future. 
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