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Spatial variation in soil reflectance
Landsat-5 TM

Fire scars - spatial and temporal variation
Landsat-5TM
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Satellite Data

@ Image acqusition
@ Landsat-5 TM
@ 1986 to date

@ Landsat-7 ETM+
@ 1999-2003

@ Dry season

1999 Landsat-7 ETM+
Bands 5-4-2 RGB

@ Pre-processing e
@ Ortho-rectification e
@ Sensor calibration
@ Empirical BRDF correction
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Vapour Pressure Deficit (VPD)
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Field Measurements
@ Site measurements
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Basal Area -~ FPC Relationship
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Multiple Linear Regression

@ All-subsets multiple linear regression (MLR)
@ Explanatory transformations

Adjusted R

@ Minimise PRESS
@ Maximise adjusted r?

@ Minimise Mallows CIO
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Selected Regression Models

Result Landsat-5 TM Model Landsat-7 ETM+ Model

Terms | B35, B405, B505, B705, VPD | B305, B405, B505, B705, VPD-
B20-5to B79° interactive terms | B2°° to B7%° interactive terms

R? 0.815 0.801

S.E. 7.98 8.26

Alternative Regression Algorithms

@ Generalised Linear Models

@ Multiple Regression with splines

@ Regression Trees

@ Support Vector Machines Regression




Generalised Linear Models

@ Don't need to assume that residuals ~ N(0,02)
@ Better model distribution of response

Logistic Regression Linear Regression
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Multiple Linear Regression with Splines

@ Can relax assumptions of linearity

Restricted Splines

@ piecewise polynomials,
smooth at the joins (knots)

@ Typically use 5,4,3 knots.

@ More data support more
knots, more flexible




Regression Trees

@ Interaction handled automatically
@ Monotonic transformations handled automatically
@ Often accurate on non-linear problems

FPC Regression Tree
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@ Random forest extenstion
@ Grows many trees based
on random selection of data
@ Feed a new observation
into each tree and average
results
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Support Vector Machines

@ Flexible modelling for classification/regression
@ Hype or Hallelujah?

Input space Feature space @ Uses hyperplanes to separate
. * ., groups
@'"'&F .\ @ Maps input space to feature
* e |* space using mathematical functions
(kernels)

@ Extension to regression (e-SVM
regression)




@ Five approaches compared

Comparison of Algorithms

@ Same predictors as the selected model
@ Assessed using c.v predictive accuracy

Method RMSE,_,
Linear Reg. 8.6
GLM 8.2
Tree (RPART) 8.2
Splines 7.1
SVM 7.1
Random Forest 7.0

@ Small increase in predictive
accuracy in newer methods

@ Cost is added complexity

@ Some practical problems
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Example of model predictions: Fire scars

Modelled FPC

Landsat-5 TM
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--+- Site 1: Scorch Height = 10.0m
FPC= #
+- Site 2. Scorch Height = 1.0m
FPC=210
--+- Site 3: Scorch Height = 2.5m
FPC =260
= Site 4. Scorch Height = 0.5m
FPC =238

1996 1998 2000 2002

Year

1990 1992 1394

--+- Site 5: Scorch Height = 2.2m

2una FPC =267




Regression model limitations

@ Topographic effects

Regression model limitations

@ Herbaceous effects




Conclusions

@ Existing regression models do a good job
@ Representative field data
@ Minimised prediction error
@ Different regression algorithms performed similarly

@ Primary limitations
@ Topographic effects
@ Herbaceous green cover

@ Current work
@ Topographic correction
@ Relationships between different structure measurements
@ Airborne LIDAR validation of FPC products
@ Linking uncertainty between field -~ LIDAR ~ Landsat models
@ Bayesian approach
@ Decoupling perennial and herbaceous FPC

@ Trend analysis of Landsat FPC products
@ MODIS time-series decomposition




