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[1] Knowledge of fuel load and composition is critical in fighting, preventing, and
understanding wildfires. Commonly, the generation of fuel maps from remotely sensed
imagery has made use of medium-resolution sensors such as Landsat. This paper presents
a methodology to generate fuel type maps from high spatial resolution satellite data
through object-oriented classification. Fuel maps were derived from QuickBird imagery,
which offers a panchromatic and four multispectral bands ranging from 0.61 to 2.44 m
resolution. The image used for this paper dated from July 2002 and is located in the
NW region of Madrid, Spain. The Prometheus system, a fuel type classification adapted to
the ecological characteristics of the European Mediterranean basin, was adopted for this
study. Viewed with high-resolution imagery, fuel-related features are often aggregations
of pixels exhibiting a variety of spectral properties. Correct identification and
classification of these objects requires an explicit consideration of spatial context. We used
an object-oriented approach, which allowed context consideration during the classification
process, as a complement to traditional pixel-based methods. The map created with
this approach was assessed to have greater than 80% accuracy for the prediction of six fuel
classes. Results suggested that object-oriented classification of high-resolution imagery
has the potential to create accurate and spatially precise fuel maps.

Citation: Arroyo, L. A., S. P. Healey, W. B. Cohen, D. Cocero, and J. A. Manzanera (2006), Using object-oriented classification and

high-resolution imagery to map fuel types in a Mediterranean region, J. Geophys. Res., 111, G04S04, doi:10.1029/2005JG000120.

1. Introduction

[2] Wildfires are frequent in Mediterranean ecosystems,
and they can become a major cause of land degradation
[Maselli et al., 2000]. Understanding the spatial variation of
fire risk is essential for forest resource management. Fuel
conditions are a primary component of fire risk; spatially
accurate fuel models are critical in fire management, par-
ticularly at the urban-wildland interface (WUI) where the
risk to life and property is acute [Andrews and Queen,
2001]. Wildfires in the WUI have recently gained attention
due to the explosive growth of WUI areas and some
catastrophic events in the last decades, such as the Southern
California fire of October 2003, which burned 300,000 ha,
destroyed 3361 homes and killed 26 people [Keeley et al.,
2004]. This concern about the impact of WUI wild fires has

led to interest in the potential of very high resolution (VHR)
satellite imagery to improve the accuracy and precision of
the fuel maps used to prevent and fight such fires.
[3] In the past, the use of remotely sensed data to map

fuel was limited by the relatively coarse spatial resolution of
the available data sources. The majority of the work in this
area used sensors such as SPOT HRV (Systeme Pour
l’Observation de la Terre-Haute Resolution Visible) and
Landsat MSS (Multispectral Scanner) or TM (Thematic
Mapper), with a ground instantaneous field of view
(GIFOV) on the order of 10 to 100 meters [De Wulf et
al., 1990; Castro and Chuvieco, 1998; Maselli et al., 2000;
Riaño et al., 2002]. Newer sensors such as QuickBird and
IKONOS provide a submeter GIFOV, but few studies [e. g.
Wang et al., 2004; Ozdemir et al., 2005] have investigated
the potential for higher-resolution imagery to improve
vegetation mapping or fuel classification accuracy.
[4] One shortcoming of traditional pixel-based methods

may be their inability to process the additional within-field
spectral variability present in high-resolution data. If the
classes sought in a fuel map can be recognized only through
the aggregation of multiple pixels, pixel-based classification
must rely on postprocess filtering to identify those classes.
This approach may become prohibitively complex; a num-
ber of potentially contradictory operations would be neces-
sary, for example, to aggregate pixels to identify basic scene
elements such as tree crowns, and then to consider the
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Politécnica de Madrid, Madrid, Spain.

Copyright 2006 by the American Geophysical Union.
0148-0227/06/2005JG000120$09.00

G04S04 1 of 10

http://dx.doi.org/10.1029/2005JG000120


spatial distribution of those elements in order to recognize
particular fuel conditions.
[5] Object-oriented classification is an alternative to pixel-

basedmethods. In this approach, pixels are aggregated before
classification, not after. Thus classification is performed on
groups of pixels (‘‘objects’’) identified according to prede-
termined rules. Objects can be classified on the basis of
spectral values, spectral variability, size, shape or in relation
to neighboring objects. Classification can also be hierar-
chical, with the arrangement of objects on one level
informing the creation of higher-order objects. The use
of objects allows direct labeling of classes such as fuel
conditions that may be both spectrally heterogeneous and
spatially complex.
[6] Although it emerged as early as the 1970s [e.g., Kettig

and Landgrebe, 1976], object-based analysis was not used
extensively within the field of remote sensing until recently
[Flanders et al., 2003; Laliberte et al., 2004; Ivits et al.,
2005]. As commercial software has become available,
several works have used segmentation of Landsat images
as an alternative to per pixels methods [e.g., Barlow et al.,
2003; Dorren et al., 2003; Wulder and Seemann, 2003].
Other authors have specifically shown the benefits of
segmenting the image into homogeneous objects to re-
duce the inherent complexity of high-resolution imagery
[Giakoumakis et al., 2002; Baatz and Schäpe, 2000].
Object-oriented analysis has become a valuable and comple-
mentary approach that creates regions as carriers of features
that are then introduced in the classification stage.
[7] The focus of this paper is to evaluate the potential of

object-oriented processing to discriminate Mediterranean
fuel types using high-resolution QuickBird imagery. The
fire-prone forest type in the study area, coupled with a mix
of homes and forest exemplify conditions where high spatial
resolution may be most valuable in a fuel map. It is hoped
that the methods developed and tested in this study will
inform and support future high-resolution fuel mapping
activities in the Mediterranean and in other regions.

2. Site Description

[8] The study area in Figure 1 is located in the NW region
of Madrid, Spain. It includes the municipalities of Galapa-
gar, Colmenarejo, Villanueva del Pardillo and Valdemorillo,
and covers an area of 5048 hectares. The mean elevation is

850 m. The region has experienced population growth that
has led to a number of new urban/suburban settlements.
These areas are particularly vulnerable to wildfires.
[9] The climate is typically Mediterranean, with a rainy

winter, short wet spring and fall, and a long arid summer
period with high temperatures [Thornthwaite, 1933]. Under
these circumstances, fire weather is common throughout the
summer. Only 7–12% of annual rainfall takes place during
the summer, and mean temperatures for the season range
from 22 to 25�C.
[10] Soils are siliceous on granite parent material. The

area is mostly covered by Mediterranean vegetation: mainly
shrublands and a typical Mediterranean formation called
‘‘dehesa’’. Shrubland areas contain Spanish greenwood
(Genista scorpius), Spanish broom (Retama sphaerocarpa)
and juniper (Juniperus oxycedrus) in a mixed distribution
that depends on factors such as terrain, slope, and humidity.
Dehesa refers to a savanna-like woodland with large grazing
pastures and scattered old trees. It appears in areas where
tree growth is limited by livestock, typically cattle. Isolated
tree stands remain surrounded by grass and shrubs in places
that would likely be forested in the absence of livestock. In
areas of elevated human impact, trees are completely
replaced by grass formations.
[11] Part of the region was reforested in the 1950s with

stone pine trees (Pinus pinea), but these plantations did not
succeed in many areas. This process led to the present
situation, where pine-forested patches and small nonadapted
pines appear between dehesa formations and natural
shrubbery.

3. Methods

3.1. Fuel Type Classification

[12] Because it is difficult to describe all physical char-
acteristics for all fuels in a particular area, a classification
system is often created whereby different types of vegeta-
tion are grouped together according to their fire behavior.
Such classification is normally based upon the size, species,
form, arrangement, and continuity of constituent fuel ele-
ments [Merrill and Alexander, 1987]. Two well-known fire
behavior fuel type systems are the Northern Forest Fire
Laboratory system (NFFL) [Albini, 1976] and the Canadian
Forest Fire Behavior Prediction system (FBP) [Lawson et
al., 1985]. Within Europe, the system referred to as ‘‘Pro-

Figure 1. Study area in NW Madrid region.
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metheus’’ deals with the composition and sorting of various
types of vegetation found in Mediterranean ecosystems
[Riaño et al., 2002]. According to this standardization, fuels
are divided into seven types (http://www.firegrowthmodel.
com/index.cfm) (Figure 2).
[13] Fuel type 1 (grass cover >50%) is land fuel. This

category comprises grasslands consisting of agricultural and
herbaceous vegetation.
[14] Fuel type 2 (shrub cover >60%, tree cover <50%) is

surface fuels. This category comprises grasslands, low-lying
shrubs (30–60 cm) and a high percentage (30–40%) of
herbs. This category includes clear-cuts, where slash was
not removed.
[15] Fuel type 3 (shrub cover >60%, tree cover <50%) is

medium-height shrubs. It comprises medium- to large-sized
shrubs (0.6–2.0 m), as well as young trees resulting from
natural regeneration or forestation.
[16] Fuel type 4 (shrub cover >60%, tree cover <50%)

comprises tall shrubs (between 2.0 and 4.0 m) and regen-
erating trees.
[17] Fuel type 5 (shrub cover <30%, tree cover >50%)is

forest areas with no understory. It includes areas where
ground fuel was removed either by prescribed burning or by
mechanical means.
[18] Fuel type 6 (shrub cover >30%, tree cover >50%,

distance between the canopy base and surface fuel layer
>0.5 m) is forest areas with medium understory. The surface
fuel consists essentially of small shrubs, grass, litter, and duff.
[19] Fuel type 7 (shrub cover >30%, tree cover >50%,

distance between the canopy base and surface fuel layer

<0.5 m) is forest areas with high and dense understory. Tree
stands with heavy surface fuels, a very dense surface fuel
layer and with a very small vertical gap to the canopy base.

3.2. Field Sampling

[20] A total of 80 field plots were distributed throughout the
study area. The sampling campaign was conducted between
July and September 2004. Because public access in the area
was limited, it was impossible to obtain a random sample of the
area. However, an effort was made to ensure that the sample
was representative of potential fuel types. A coarse classifica-
tion-based stratification roughly corresponding to fuel type
was created using the QuickBird imagery. Plot locations were
chosen in situ based upon access and stratum; at least five plots
were located in each fuel stratum. Once established, plots were
carefully collocated with the imagery in the field.
[21] Plots were relatively small, 5 � 5 m, to match the

potentially small grain size of fuel information available
from QuickBird. Measurements at each site included: spe-
cies and height of all trees and shrubs, substrate type, the
distance between the top of the understory and the crown
base, and a general landscape description. Afterward, the
scheme shown in Figure 2 was applied to identify the
Prometheus fuel type of each plot.

3.3. Data Preprocessing

[22] Object-oriented classification was carried out using
ten image layers derived from QuickBird imagery dated
from July 2002. QuickBird is the highest-resolution com-
mercial remote sensing satellite now operating, offering a

Figure 2. Prometheus fuel classification system for Mediterranean systems.
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panchromatic channel (from 0.61 m resolution) and 4
multispectral channels (2.44 m resolution) from the red,
blue, green and near-infrared (NIR) portions of the spec-
trum. Preprocessing consisted of orthorectification using
digital elevation models and field-collected ground control
points located by differentially corrected global positioning
system; root mean square error (RMSE) of this process was
less than 1 pixel.
[23] The image layers consisted of (1) four multispectral

bands with 2.44 m GIFOV, (2) these same bands resampled
to 70-cm pixels, (3) a normalized difference vegetation
index band (NDVI = (NIR � red/NIR + red) [Kriegler et
al., 1969; Rouse et al., 1974]), and (4) a pixel-based
classification of vegetation cover class.
[24] The resampled bands (2 above) were obtained

through a resolution merge with the panchromatic data to
produce high-resolution multispectral imagery. This method
[Welch and Ehlers, 1987] involved resampling the original
multispectral bands to 0.7 m resolution, performing a
Principal Component transformation using these bands,
rescaling the 0.7 m panchromatic band to match the range
of the first principal component (PC1, assumed to represent
overall scene luminance), and substituting the rescaled
panchromatic band for PC1 in a back transformation to
the original multispectral bands. This method makes use of
the higher-resolution panchromatic band while maintaining
the general characteristics of the original multispectral
histograms [Chavez et al., 1991].
[25] NDVI values were calculated using the 2.44 m

resolution bands and were resampled to 70 cm resolution
afterward. The cover layer, consisting of 10 classes, was
produced using supervised classification on the 0.70 m
multispectral bands. Finally, an additional thematic layer
delimiting areas of pine plantation was used in the classi-
fication process. It should be noted that many of the areas
marked as ‘‘planted’’ in this layer have failed since their
establishment in the 1950s.

3.4. Object-Oriented Classification

[26] Image segmentation is a process by which pixels in
an image are grouped together using a stated system of

rules. These pixel groups are the unit of analysis in object-
oriented classification. The analyst may create differing
segmentations of the same image by changing band weights
and altering preferences for the type of segments sought. In
eCognition#, the software used in this analysis, one may
specify the general size, shape, and spectral heterogeneity of
the objects to be produced in a segmentation [Flanders et
al., 2003; Benz et al., 2004; Laliberte et al., 2004]. The
general approach tested here was hierarchical.
[27] The first step in this approach was a multiscale image

segmentation. In iterative steps, a three-level network of
image objects was developed. We first created a segmenta-
tion (the ‘‘fuel type level’’) that was eventually to be
classified according to the Prometheus fuel types. This
segmentation was the result of a two-step process. First,
the relatively coarse 2.44 m multispectral data were seg-
mented with weights favoring regularly shaped segments.
Adjacent regularly shaped segments that had similar spec-
tral characteristics were then merged in a second segmen-
tation process. The segments resulting from this two-step
process were consistent with fuel type boundaries identified
on the imagery using professional judgment. Objects with
extremely high spectral heterogeneity at the fuel type level
were classified as ‘‘urban’’ and not considered for further
segmentation. A second (‘‘intermediate level’’) segmenta-
tion was independently created incorporating the NDVI
image and the pine plantation thematic layer. The last
segmentation (‘‘pixel level’’) corresponded to the classifi-
cation of cover type. This pixel level layer was produced
using supervised maximum likelihood classification per-
formed upon the pansharpened 0.70 m bands (blue, green,
red, NIR) to produce ten simple cover classes: tree, high
shrubs, medium shrubs, low shrubs, grass, wet grass, soil,
road, rock, and shadow. The pansharpening process was
necessary in this step because small or narrow surfaces like
roads and isolated trees would have been difficult to classify
using the original 2.44 m bands. Figure 3 shows the
difference in the level of detail obtained.
[28] Objects created in the intermediate and fuel type

level segmentations were then classified using eCognition’s
nearest neighbor classifier, considering both the spectral and

Figure 3. QuickBird image subset presented with (a) the pansharpened bands and (b) the original 2.44 m
resolution bands. The grid signifies Landsat resolution.
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spatial properties of those objects and the lower level objects
contained within them. The training areas supporting this
supervised classification were independent of the validation
data set and were identified visually using expert interpreta-
tion of the imagery. The simultaneous representation of
image information on different scales allowed the propaga-
tion of many different kinds of relational information. This
information was used to create the context-based semantic
and spatial rules (summarized in Table 1) that governed the
use of pixels to classify intermediate objects and then the use
of both intermediate objects and pixels to classify fuel class
level objects. The final fuel map was simply composed of the
classified objects in the fuel type level.

3.5. Accuracy Assessment

[29] The field plots were used to validate two stages of
the fuel type classification. In the first, the cover type (tree,
high shrubs, medium shrubs, low shrubs, grass, wet grass,
soil, road, rock, or shadow) was estimated for a 1-m square
area corresponding to the coordinates at the center of each
plot. Large-scale printouts of the imagery were brought into
the field to aid in the registration of the plot to the imagery.
The recorded cover type was later checked against the cover
type mapped through the pixel level classification. Only 77
of the 80 plots were used for this purpose since no cover
type was recorded in the 3 plots located in urban areas. The
other validation effort was a plot level assessment (covering
25 m2) of fuel type that was based upon the tree, shrub and
ground cover list from each plot. These field-based assess-
ments were then compared to the mapped fuel type for the
majority of the pixels within the plot area (all plots turned
out to be homogenous with respect to final fuel classifica-
tion). Error matrices were derived for both validation
exercises. In addition to overall accuracy, Kappa statistics

[Hudson and Ramn, 1987; Congalton, 1991, 2001] were
calculated for both cover type and fuel class.

4. Results

4.1. Pixel-Based Classification of Cover Type

[30] Results of the pixel-based supervised classification
are shown in Figure 4. Visual inspection and our validation
exercise brought to light several attributes of the cover
classification. Individual trees were correctly distinguished,
as in Figure 4e which shows a dehesa (open woodland)
formation. Riparian forest were distinguished from the
neighboring vegetation (Figure 4d), and the roads and tracks
were also properly assigned (Figures 4b and 4d). Overall
accuracy, presented in Table 2, was relatively high. Values
corresponding to ‘‘producer’s accuracy’’ indicate the prob-
ability of a reference sample being correctly classified and
‘‘user’s accuracy’’ is indicative of the probability that a
sample classified on the map/image actually represents that
category on the ground [Congalton, 2001].
[31] According to our error assessment (Table 2), the main

sources of error came from the ‘‘high shrub’’ class, with a
users accuracy of 50%. The ‘‘bare ground’’ class was over-
estimated and some trees were misclassified as irrigated
grass, which is normally found within riparian areas, like
the one shown in Figure 4d. Identification of pine trees was
somewhat problematic. In addition, urban areas, such as the
one depicted in Figure 4c, resulted in a complex mix of cover
classes. Global classification accuracy according to the
validation plots was 75%, with a Kappa coefficient was 0.69.

4.2. Object-Oriented Classification of Fuel Type

[32] The context-dependent process of object classification
allowed the labeling of the coarsest-level objects thought to
conform to fuel type boundaries. Figure 5 shows several

Table 1. Selected Context-Based Rules for Classifying Each Level Toward Fuel Type Classification

Class Level Parameters

Cover type pixel multispectral mean and standard deviation
Broadleaf tree (stand) intermediate relative area of ‘‘tree’’ cover type at pixel level,

pine plantation thematic layer
Broadleaf tree (isolated) intermediate mean NDVI, mean difference with neighbors’ NDVI,

pine plantation thematic layer
Pine tree (stand) intermediate relative area of ‘‘tree’’ cover type at pixel level,

pine plantation thematic layer
Pine tree (isolated) intermediate mean NDVI, mean difference with neighbors’ NDVI,

pine plantation thematic layer
Trail intermediate segment length � segment width, mean NDVI, relative

area of ‘‘bare ground’’ cover type at pixel level
Urban fuel types spectral heterogeneity, relative border with other

‘‘urban’’ objects
Bare soil fuel types relative area of ‘‘trail’’ + ‘‘rock’’ + ‘‘road’’

lower-level objects
Fuel type 1 fuel types relative area ‘‘grass’’ + ‘‘irrigated grass’’ lower-level

objects, relative border with other ‘‘fuel type 1’’ objects
Fuel type 2 fuel types relative area of ‘‘short shrubs’’ lower-level objects,

relative border with other ‘‘fuel type 2’’ objects
Fuel type 3 fuel types relative area of ‘‘medium shrubs’’ lower-level objects,

relative area of ‘‘shadow’’ lower-level objects,
relative border with other ‘‘fuel type 3’’ objects

Fuel type 4 fuel types relative area of ‘‘high shrubs’’ lower-level objects,
relative area of ‘‘shadow’’ lower-level objects,
relative border with other ‘‘fuel type 4’’ objects

Fuel type 5 fuel types relative area of ‘‘pine tree’’ (stand and isolated) objects,
relative border with other ‘‘fuel type 5’’ objects

Fuel type 7 fuel types relative area of ‘‘broadleaf tree’’ (stand and isolated) objects,
relative border with other ‘‘fuel type 7’’ objects
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examples of this fuel type classification. Figure 5b corresponds
to an oak forest. Depending on the relative area of oak trees or
shrubs, objects were assigned to fuel type 3 or 7. Areas where
grass was dominant were allocated to fuel type 1. Figure 5c
illustrates the cover type complexity of urban settlements that
was used in the identification and ultimate removal of urban
objects from the fuel classification. Figure 5d shows an area
previously planted with pine; fuel types 3 and 5 were assigned

depending on the relative area of shrubs or pine trees in lower-
order objects. A riparian corridor (in red) was also properly
identified in that subset. Finally, Figure 5e corresponds to a
dehesa formation, where isolated oak trees were combined
with other covers, showing a mixed fuel distribution.
[33] Sixty-five out of 80 plots were correctly identified to

one of 6 fuel types using object-oriented classification (both
field inspection and image classification suggested no occur-

Figure 4. (a) Pixel-based classification of cover type. Detailed examples of (b) an oak forest, (c) an
urban settlement, (d) a reforested area, and (e) a riparian forest.
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rence of Prometheus fuel type 6 in the study area). Table 3
suggests that error was relatively well distributed across fuel
types. Fuel type 3 was predicted with the lowest accuracy and
appeared to be confused with type 7. This error may be traced
to the pixel level classification, in which there was confusion
of medium and high shrubs with trees (Table 2). The cover
classification precision therefore influenced the fuel type
classification. The overall accuracy of the fuel type classifica-
tion was 81.5%, with a Kappa coefficient of 0.78.

5. Discussion

[34] In pixel-based analyses, spatial resolution should
approximately match the spatial scale of the features to be
measured [Woodcock and Strahler, 1987]. If resolution is
too coarse, signatures of interest become convolved with
neighboring signatures; if resolution is too fine, signatures
correspond only to components of the features of interest,
leaving the post facto task of combining components. The
GIFOV of QuickBird imagery is considerably smaller than
the spatial dimension of fuel type units, but the imagery
may be used to resolve objects such as isolated tree crowns,
paths and other cover types that are fuel class constituents
[Giakoumakis et al., 2002]. The approach tested here linked
these pixel level fuel constituents to higher-order fuel class
polygons through an object-oriented hierarchical framework.
[35] In the context of an object-oriented analysis, the pixel

may be thought of as the most basic in a continuum of
increasingly complex objects. Pixels may be assigned a class
value, as happens in traditional pixel-based classification, and
they may also be combined using spectral, spatial or relational
rules to form more complex objects. As such, the pixel level
accuracy displayed in Table 2 represents an assessment of the
accuracy of the analysis’ simplest objects. As simple objects
are part of larger objects at higher levels of organization, it is
possible that initial accuracies may rise as contextual rules
become a factor. In other words, the final fuel classification
makes use of the cover type information present at the pixel
level without necessarily being limited by the pixel level
accuracy of those objects. This is particularly encouraging
because of the spectral limitations of currently available VHR
imagery. Neither QuickBird nor IKONOS carries a shortwave
infrared band, although workwith Landsat TM and ETM+ has
highlighted the importance of that spectral region for forest
structure studies [Cohen and Goward, 2004].

[36] There are several ways in which contextual informa-
tion enhanced object classification in this analysis. Urban
areas have a characteristic disaggregated aspect, with a mix
of cover patterns. Pixels within urban and suburban sectors
present a broad range of spectral values that make them
difficult to classify through a pixel-based approach, leading
to alternative techniques such as texture analysis [Puissant
et al., 2005]. In object-oriented classification, by contrast,
such areas are relatively simple to identify because they
contained such a diversity of subobjects. Contextual bene-
fits were also seen in the classification of linear objects such
as roads, tracks, and riparian areas. Consideration of the
ratio of segment length to width enabled the relatively
accurate classification of such objects despite internal spec-
tral variability. Similarly, the relative area of ‘‘shadow’’ in
lower-order objects was successfully used to delimit tall
shrubs and trees. External contextual information may also
be used to enhance classification. A spatial record of
established pine plantations was used to refine intermediate
objects classified as pine forest.
[37] The principal drawback to the object-oriented pro-

cess described here was the amount of time spent in creating
the hierarchy of semantic rules needed to build objects
relevant for fuel classification. It is hoped, though, that
the insights gained through this process will provide a
template for classifying fuel in this and other Mediterranean
ecosystems. The software used for this analysis (eCogni-
tion) allows for the recording and editing of complex
processing protocols, so the mapping process may be
streamlined in the future. It should also be noted that the
computing resources needed for this process were signifi-
cant: several layers were considered simultaneously, and
even a single QuickBird image is relatively large (approx-
imately 1 gigabyte). The application of the complete pro-
cessing algorithm, which was developed on subsets of the
imagery, ran for 10 days using a 3.2 Ghz. desktop computer.
However, since this processing took no personnel hours and
since developments in the computing field are likely to
continue, processing time should not be considered limiting.
[38] The spectral properties of fuel classes can become

quite complex and heterogeneous when studied with high
spatial resolution imagery. This inherent heterogeneity is
difficult for pixel-based approaches to accommodate in a
single class. The object-oriented classification paradigm
allows the systematic and knowledge-driven combination

Table 2. Quantitative Accuracy Assessment for Pixel-Based Cover Type Classificationa

Reference Data

User’s
AccuracyTree

Height of
Shrubs

Medium
Shrubs

Short
Shrubs Grass

Wet
Grass Ground Road Rock Shadow Sum

Classified Data
Tree 19 0 2 0 0 1 0 0 0 0 22 86%
High shrubs 2 9 3 1 3 0 0 0 0 0 18 50%
Medium shrubs 2 0 14 0 0 0 0 0 0 0 16 88%
Short shrubs 0 0 1 4 0 0 0 0 0 0 5 80%
Grass 0 0 0 1 8 0 0 0 0 0 9 89%
Wet grass 0 0 0 0 0 2 0 0 0 0 2 100%
Ground 0 0 1 0 0 1 2 0 0 0 4 50%
Road 0 0 0 0 0 0 0 0 0 0 0 –
Rock 0 0 0 0 0 0 0 0 0 0 0 –
Shadow 0 0 0 0 1 0 0 0 0 0 1 –
Sum 23 9 21 6 12 4 2 0 0 0 77
Producer’s Accuracy 83% 100% 67% 67% 67% 50% 100% – – –

aOverall classification accuracy is 75.3%.
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of spectrally diverse pixels in a way that is directed toward
the production of map units matching the desired classifi-
cation scheme. The work reported here confirms that the
combination of both approaches is capable of producing
relatively accurate results in the field of fuel mapping.

6. Conclusions and Implications

[39] A primary use of remotely sensed fuel information
has been as an input to fire spread simulation tools such as

BehavePlus or FARSITE for purposes of fighting wildland
fire [Andrews et al., 2003] or evaluating the effect proposed
fuel reduction treatments [Stratton, 2004]. While the wild-
land-urban interface may provide scenarios where running
such simulations at the single-meter grain is justified, the
scale of interest for the spread of wildland fires will be
considerably coarser in many cases. The primary value of
VHR imagery for fuel mapping therefore lies not only in its
ability to produce high-resolution maps but also in its
potential to improve fuel map accuracy with its ability to

Figure 5. (a) Fuel map obtained with object-oriented processing. The subsets correspond to examples
of (b) oak forest, (c) urban settlement, (d) reforested area, and (e) riparian forest.
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detect submetric fuel components (see Figure 3). The
mapping process employed here allowed the recognition
of fuel components (individual trees and shrubs) and the
production of an accurate and relevant fuel classification.
Results of this polygon-based classification may be raster-
ized and resampled to any appropriate resolution.
[40] While more research is needed to identify the

relative effects on accuracy of object- versus pixel-oriented
classification and VHR versus moderate-resolution imag-
ery, our results establish object-oriented processing as a
viable method of producing fuel maps with QuickBird
imagery. The ability to create protocols defining the
interrelationships between objects at different scales, from
pixel level cover types to larger spectrally heterogeneous
polygons representing fuel class units, allowed the large
volume of data present in a VHR scene to be processed
efficiently and accurately with respect to fuel classifica-
tion. While creation of the protocols used here was labor
intensive, processing time should decrease as studies such
as this one solve more of the critical issues in hierarchical
classification. Commercially available software such as
eCognition allows extensive automation of object identifi-
cation and organization, meaning that lessons learned in
one scene may extend to others across the region. This
cross-scene efficiency would address a practical barrier to
the wider use of VHR imagery: the large amount of data
that must be processed for a relatively small area. While
further investigation is needed into the relative costs and
benefits of the regional use of VHR data for fuel mapping,
this project has demonstrated that submeter remotely
sensed data can be used to create fuel classifications that
are potentially useful in the prediction of fire behavior and
effects.
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